Oscillation Physics at Accelerators

A Whole v World

Pushing the boundaries: the atmospheric result

Rocky terrain: LSND

Terra incognita: The future

But first:

Why accelerators are the way to go...

Making Neutrino Beams at Proton Accelerators

Accelerators give you more control.

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2}2\theta \sin^{2}(1.27\Delta m^{2}L/E)$$

ν_u disappearance

v_e appearance

Oscillation Probability depends on:

- •Two fundamental parameters
 - Δm^2
 - $\sin^2 2\theta$
- •Two experimental parameters
 - L: distance from source to detector
 - E: Neutrino energy

You can pick your L & E to select sensitivity to a specific range of Δm^2

L/E, Intensity and Sensitivity

$$P_{osc} = \sin^2 2\theta \sin^2 (1.27\Delta m^2 L/E)$$

- Small Δm² → small P_{osc}
 Unless the experiment has large L/E to compensate!
- Large Δm² → oscillations happen rapidly For a single ν energy:

But beams have a wide E range, detectors have finite resolution and large size: $\langle \sin^2(1.27\Delta m^2L/E)\rangle = 1/2$ By choosing L/E too large, You can lose sensitivity to Δm^2

Small sin² 2θ → small probability,
 So an experiment needs high statistics

L is a discrete choice E is always a distribution (in nearly all neutrino experiments!)

The peak position depends on: energy of incoming protons magnetic focusing of secondaries using *horns*

Decay-at-rest beams: up to 50 MeV Decay in flight beams: up to 300 GeV

You also have more control over the neutrino flavor

But accelerator beams can be made of nearly pure $\nu\mu$

(Decay in flight)

Or with a well established flavor content (Decay at rest)

Beam timing makes the signal easy to identify over backgrounds...

The 1.6 µs spill at MiniBooNE

It is even possible to see the fine timing...

Timing cuts result in a significant reduction of background.

Exploration #1:
Understanding the atmospheric oscillation signal

Super K has seen a deficit of ν_{μ} , but...

- Is it really $\nu\mu \rightarrow \nu\tau$?
- Is there no other component?
- What is the correct Δm^2 ?
- Is the mixing angle maximal?

To study $\Delta m^2 \sim 1E-3$ you need L/E $\sim 1E3$

if E~1 GeV then L~1000 km

K2K experiment:

accelerator based ν_{μ} disappearance

Data Reduction for SK K2K Events

 $\Delta t \equiv T_{SK} - T_{KEK} - time of flight$

Accelerator produced events are well isolated by the timing!

Results on atmospheric anomaly with K2K

K2K was a crucial proof of principle & has added useful info, but it will always be statistics limited. We need new experiments!

MINOS: v_{μ} beam from FNAL to $E \sim 2 \text{ GeV}$ Soudan in Minnesota

L = 730 km

LSND has seen ve appearance in a vµ beam but...

- Is it really oscillations?
- If so how can we explain that?

Problem:

$$\frac{\Delta m_{12}^{\nu_1}}{\nu_2} v_1 \qquad \Delta m_{13}^{2} = \Delta m_{12}^{2} + \Delta m_{23}^{2} \qquad \Delta m_{23}^{2} \qquad \Delta m_{23}^{2} + \Delta m_{23}^{2}$$

Tag $\overline{\nu}_e$ s from CC interaction and subsequent neutron capture

Observe **87.9** ±22.4±6.0

ν_e appearance events

Oscillation Probability: 0.264

±0.067±0.045 %

Data points: Excess after Beam-off subtraction

Expectation for oscillations $(\Delta m^2=0.24 \text{ eV}^2)$

The

But so far we have only considered left handed neutrinos

These participate in the weak interaction.

In principle there could be right-handed neutrinos. They just would not interact

"Sterile Neutrinos"
Not in the Neutrinos"

Strictly left-handed neutrinos Neutrinos

Because a Dirac neutrino mass term in the SM Lagrangian looks like:

$$m(\overline{\nu}_L\nu_R+\overline{\nu}_R\nu_L)$$

But now we know that neutrinos have mass...

Massive neutrinos imply there are right-handed neutrinos.

"Sterile Neutrinos" cannot interact via the weak interaction

→ But they could oscillate to standard model neutrinos

ve

Super Symmetry

(Dvali +, hep-ph/9810257, Arkani-Hamed +, hep-ph/0006312, etc.)

Grand Unified Theories

(Mohapatra, hep-ph/017264, McKeller + , hep-ph/0106121, etc.)

Extra Dimensions:

(Valle +, PRD63 073002, Ma +, hep-ph/0006340, tec)

Nh

An extra neutrino solves the LSND problem

MiniBooNE Detector

MiniBooNE at Fermilab:

Test LSND in a new E range thus a different L range so that L/E is the same.

Expect results in 2005!

A Neutrino Factory

Proton Drivers:

JPARC,

A US Proton Driver?

An important upcoming question!

Near Term: MINOS, CNGS, MiniBooNE

Neutrino measurements are statistics limited....need lots of protons! Future high intensity proton sources output $>10^{22}$ Protons/year!

A neutrino experiment can never be too big or have too many protons!

Important to the next step in oscillation measurements

Not just for oscillations...

For example: Neutrino Magnetic Moments

Sensitive to beyond-the-Standard-Model theories!

Minimally Extended Standard Model

$$\mu_{v} = \frac{3eG_{F}}{8\sqrt{2}\pi^{2}} m_{v} \sim 3 \times 10^{-19} \mu_{B}$$

SUSY models—left-right supersymmetric models

$$\begin{split} \mu_{\nu_e} &\cong 5.34 \text{ x } 10^{\text{-}15} \text{ - } 10^{\text{-}16} \, \mu_B \\ \mu_{\nu_\mu} &\cong 1.13 \text{ x } 10^{\text{-}12} \text{ - } 10^{\text{-}13} \, \mu_B \\ \mu_{\nu_\tau} &\cong 1.9 \text{ x } 10^{\text{-}12} \, \mu_B \end{split}$$

Large Extra Dimensions

$$\mu_{\nu} \cong 1.0 \text{ x } 10^{\text{-}11} \mu_{B}$$

Present limits are about an order of magnitude away...

And non-neutrino physics also!

- An excellent neutron source
- Interesting low energy muon beams
- Medical applications

Proposals to build a Proton Driver in the US:

BNL Fermilab Jefferson Lab (?)

An important opportunity for the U.S. to pursue!

And Beyond!

intense neutrino beams from

Conclusions:

Accelerators allow better experimental control, hence higher precision

Already the program is varied and exciting:

coming soon: More from K2K

First results from MiniBooNE
The startup of Minos and CNGS

There is great potential for future proton drivers and perhaps a neutrino factory

This is rich territory to explore!